
B
uilding a user interface is
an onerous task. When
specifying a product, the
user interface is often the
most complex part of the

customer requirements. Part of the rea-
son for this difficulty is that many of
the other complex engineering issues
are considered implementation issues,
because the user may never be aware
of them. For example, how much do
you need to know about guiding laser
beams when you press play on your
CD player? By definition the user will
be aware of everything on the user
interface. In an ideal world the inter-
face would be specified in part by a
Human Computer Interface (HCI) pro-
fessional. However not many of us are
working in such an ideal world, and the
engineer regularly has to take on this
role, often with no formal training.

In the software world one cynical
view is that many user interfaces start
life as debuggers. How much of the
internal state of the software is ex-
posed to the outside world can depend
on what the developer needs to know.
A graphical front end is then tacked on
to this debugger. Embedded develop-
ers have a slightly better reputation,
partly because the discipline of indus-
trial design has an influence on the
hardware, and the software interface
has to function through that hardware.

One of the reasons it is so hard to
evaluate and refine the user interface is
because it is so hard to measure. The
number of messages a network router
must process in a minute can be speci-
fied as a number, which marketing can
demand and engineering can either
deliver or negotiate—it is a quantity
that all involved can understand. A
bigger number is better but usually
costs more. For the user interface,

by NIALL MURPHY

Designing User Interfaces: What
Does the Customer Really Want?

24 EMBEDDED SYSTEMS PROGRAMMING MAY 1996

In an ideal world, a Human
Computer Interface professional
would design the interactions that
take place between the user and
the machine. Unfortunately, we’re
not living in an ideal world.

R
up

er
t

A
dl

ey

however, the requirement given to an
engineering team could vary from “the
product shall be easy to use for a
novice user” to a full specification
describing the response to any given
key pressed and defining the exact lay-
out of a keypad or the screen layouts
for a Graphical User Interface (GUI).

Neither the engineers nor the mar-
keting team will be able to quantify the
usability of the system and say “Yes, it
is 75% usable for the novice and 82%
usable for the experienced user.” Not
only that, but for a given change there
is often disagreement between every-
one concerned as to whether that
change will improve usability or not.
To add to the difficulty, some of these
decisions are being made before there
is a system on which to test any of the
ideas. Even when a system is available
to try out variations of the user inter-
face, the kind of hard data that can be
obtained in other areas of engineering
will not be available, and the disputes
will continue.

A feedback loop exists between
engineering and marketing, even if
those functions are performed by the
same people in a small company. The
engineers produce an interface,
whether in paper form, slide show,
mock-up, or full-functioning proto-
type. The reaction of the user to this
interface is evaluated, which leads to
changed requirements and further trals.
This feedback loop generally decays
over time as changes become minor
and do not lead to further changes.

Unfortunately, there is also the possi-
bility that the changes that occur with
each iteration are so major that they
always lead to further changes. Often a
change that is only intended to have a
minor impact can upset the overall
consistency of the interface, leading to
compromises in unrelated areas. When
this happens, the change should be
reevaluated.

Damping this feedback loop so that
it decays rapidly is the key to meeting
deadlines. Usually the engineers are
the ones under deadline pressure, and it
is they who must force all changes to
be justified or suffer the consequences.

One of the things to be wary of as
requirements change is that change can
be bad for the structure of the software.
While the interface may be incremen-
tally improved, each round of changes
may compromise the internal design as
the software is coerced into doing
something that was not envisaged
when the design began. All too often it
is possible to implement the change
with a hack, which may come back to
haunt you. The coder rationalizes it by
planning to return to code it properly
once the interface is stable. I will leave
it as an exercise to the reader to figure
out how often that happens.

New versions of the interface could
be tried out in a special build, with no

changes committed to the master
sources, unless it was decided that they
were acceptable. This process does not
work because all the new features have
to be seen together, and some survive
and others do not.

Some features make it through the
first round only to be shot down during
a future round of trials that are sup-
posed to be examining an unrelated
feature.

Another approach would be to do a
complete rewrite of the user interface
code once the interface is stable.
Whether this option is feasible depends
on the application and the time scales.
The important point is that the engi-
neer should be aware that this is an
area of danger.

The rate of change of requirements
in the early stages can be high simply
because the interactions may be com-
plex enough that there are flaws and
inconsistencies in a specification that
will not be discovered until it is being
implemented. In one part of the speci-
fication it may say, “Under condition
A turn on light X.” In another part it
may say, “Under condition B turn off
light X.” During implementation it
may transpire that A and B can be
simultaneously true.

Another cause of change is that
when interactions are specified,

MAY 1996 EMBEDDED SYSTEMS PROGRAMMING 25

Engineers are the

ones under dead-

line pressure, and

it is they who

must force all

changes to be

justified.

designers may have to depend on their
imagination. Seeing the real thing
might not live up to the expectations.

The hardware aspects of the inter-
face do not suffer as much from change
as the software, especially later in the
project when change is most destruc-
tive. The primary reason for this situa-
tion is money. Adding a feature to soft-
ware in an embedded product does not
add to the cost per unit, while adding a
feature to hardware almost always will.
There is often a tooling cost or external
contractors or suppliers who are
involved in the production of hard-
ware, and changes to hardware will
often lead to bills from these vendors.
Changes in software costs in engineer-
ing time, but because engineering time
does not appear on a purchase order,
no one has to sign off for it, and it is
not perceived as an extra cost. It is sim-
ply seen as an example of the software
engineers being late again. Even if a
conscious decision were made to com-
pare costs that way, the external ven-
dor cost would be a quote to which
developers would more than likely
stick, while the engineers asked to esti-
mate the time to perform the change
will invariably underestimate. En-
gineers may not allow for the time to
write extra tests or the cost of unfore-
seen bugs in the new code.

SAMPLE USERS

One of the most important parts
of the whole process of decid-
ing what needs to be changed

is observing users and interpreting
their comments. Most of the texts on
the subject of interface design advo-
cate involving the user at all stages of
the development cycle. This approach
is necessary if the interface is the cen-
tral component of the product, such as
a flight simulator or virtual reality
application. For applications with less
demanding interfaces, a high level of
user input can be disruptive. At the
very start of the project, try to ensure
that the engineers are exposed to the
needs of the user so they learn how to
look at their own work from the point
of view of the user. This outlook will

benefit them throughout the project.
The cost of statistically significant

surveys of user preferences is often
prohibitive, unless the product is pure-
ly interface related, such as a new
alternative to the mouse. Often user
feedback comes from token users who
are walked into the engineer’s office,
given a quick demo of the product,
allowed to try it out for a while, and
asked for an opinion.

Be careful in your choice of user.
There is an adage in the psychology
world that most published psychology
is the psychology of college freshmen.
This adage comes from the fact that
the most convenient and plentiful sup-
ply of guinea pigs for academic
researchers is the undergraduates in the
researchers’ own institution, which of
course can skew any results. If you get
the engineers working down the hall to
try out your VCR interface, the com-
plexity of programming timers may
not be a challenge to them, but a broad-
er group containing non-technical peo-
ple might show great difficulty in this
area.

Demonstrations are often performed
by the engineer responsible for creat-
ing a significant part of the interface. A
user may be less critical of the inter-
face because someone is present who
may feel personally criticized. It is
often better if the designer is not pre-

sent or at least does not play a central
role in the discussions. If the team is
not known to the user, then the design-
er can easily open with the line, “This
is what the folks in engineering came
up with, but I am not too sure about it.”
The demonstrator is distanced from the
design, leaving the audience feeling
less threatened. By being mildly criti-
cal of the interface, the presenter sets
the tone to encourage others to express
whatever they think without fear of
offending. It may also be useful to
point out to the user that the interface is
being tested, not the user. This avoids
situations in which the user may pre-
tend to understand something to avoid
appearing stupid. You also want to
avoid the Hawthorne effect, which is
peoples’ tendency to work harder
when they know they are being
observed, which leads to non-typical
behavior.

In the discussions that follow such
demonstrations, it is important to have
a strict agenda. When people are asked
what they think of a certain interaction,
they tend to say that X is wrong and
then describe the interaction that
would work. As the observer, it is
important that you find out about X
being wrong, and why. Do not let
token users go too far down the road of
describing the solution. The group may
move to a discussion of a user's hypo-
thetical interface, rather than the one
that is being demonstrated. The solu-
tion presented by a user may be a valid
one, and if so, the design team can
think it through later and contact the
user again for details. The reason that
demonstrations are not good opportu-
nities for gathering solutions is that
often a specific example activity is
chosen for the demonstration. The user
will describe an interface that suits the
particular example, but that may not
represent a good general solution.

Use sample operators to find out two
things: the needs of the user, and the
faults in the current interface.
Sometimes it is interesting to let users
talk about whatever occurs to them as a
good idea and sometimes politeness
demands it. However, do not allow

26 EMBEDDED SYSTEMS PROGRAMMING MAY 1996

Designing User Interfaces

Demonstrations

are often

performed by the

engineer

responsible for

creating a

significant part of

the interface.

28 EMBEDDED SYSTEMS PROGRAMMING MAY 1996

Designing User Interfaces

these ideas to dominate the exercise.
Is the customer always right? I may

be committing marketing heresy by
suggesting that the customer may
sometimes be wrong. You will have to
ask yourself the same question many
times during preference trials. When a
customer asks for a feature, it will
often be up to you to point out the
trade-offs. If a display shows a list of
records in alphabetical order, the user
may give reasons why a chronological
ordering would be preferable. You as a
designer know that there is going to be
a performance penalty if the list has to
be sorted each time it is going to be
displayed, users may be barely satis-
fied with current speeds, and the per-
formance penalty may make them
decide against the change. Often, the
engineer can see these issues ahead of
time while a user could not be expect-
ed to foresee the tradeoffs.
Performance versus usability will be
one difficult tradeoff.

In safety critical applications there
will be a tradeoff between usability
and safety. The Therac-25 was a can-
cer irradiation device whose faulty
operation led to a number of deaths. As
a safety feature, all the settings for the
device had to be entered through a ter-
minal as well as on a control panel.
This was considered redundant by
operators of a prototype. It was “redun-
dant” in the best sense of the word, but
this feature was not appreciated by the
users, who assumed that the safety of
the equipment was beyond doubt. The
design was changed before release so
that the settings could be entered on the
terminal alone. Once the settings were
accepted by hitting the return key, the
user was asked to confirm that the set-
tings were those that were actually
required. This confirmation was per-
formed by pressing the return key
again. This extra step was considered a
replacement for the original second
interface.

Unfortunately, users soon learned to
press the return key twice in succes-
sion, because they knew that they
would always be asked for confirma-
tion. The two presses, similar to a dou-

ble-click on a mouse, became a single
action in the mind of the user, and no
actual review of the settings was per-
formed. Due to faulty software, some
of the settings were occasionally not
properly recorded. Since the cross
check of having the settings entered
twice had been removed, the fault was
not detected. This was a case where
what the user asked for was definitely
not what the user needed.

Another tradeoff is power of expres-
sion versus ease of use. The most obvi-
ous example here is the Unix shell
compared to a windowed interface
with a file manager. The file manager
allows us to select certain files and per-
form operations on them, such as mov-
ing or deleting, by manipulation with
the mouse. The command line is more
expressive. Regular expressions and
wildcarding can be used to state exact-
ly which files are to be deleted, and
operations can be made recursive
throughout a tree of directories.
However, the command line is more
difficult to use and is non-directed, in
that the user is presented with no
choices. The graphical interface is a
more directed interface that lets users
see a finite number of things in front of
them to act on. In the early stages most
users will be looking for a directed
interface, but as they become more
experienced, the desire for expressive
power increases, and the tolerance of
complexity increases. If you are con-
stantly changing your trial users, they
may stay at the novice stage. At the
other extreme there is a danger in using
the same users all the time. Users, like
designers, are aware of the history of

the development of the interface, and
that history sometimes justifies idio-
syncrasies a fresh user would find far
less acceptable.

In the interests of getting early feed-
back from users, without the cost of
building functioning interfaces, paper
prototypes are sometimes used. These
prototypes can take the shape of story-
board-type demonstrations where the
user is presented with a sequence of
pictures of the interface, as some oper-
ation is performed. While pen and
paper make good brainstorming tools,
this method of presenting an interface
to users is extremely limited. A story-
board will always give the impression
of a very slow interface. After being
shown a four-key sequence, the user
will often respond, “You mean it takes
me that long just to initialize the sys-
tem?” The user’s requests will be
based on reducing the number of steps
rather than making the interface more
intuitive. If the user actually pressed
the four keys on a working interface it
would take only a couple of seconds
and not seem as laborious as turning a
number of pages.

When a different picture is shown
for each step, it can be hard for users to
pick out exactly which parts of the pic-
ture have changed, and they are forced
to scan the whole display each time.
With a functioning prototype they are
looking at one display, and changes
catch the eye immediately. Note that
the functioning interface may not rep-
resent a full system. Often, an impres-
sion of the final display can be present-
ed in graphical format on a worksta-
tion. The important distinction is that
the final display is functioning. In
many cases, such an interface can
serve as the front end for the produc-
tion code for a large part of the real
system.

IMPLEMENTATION

Some issues arise when you spec-
ify the interface. The overall
consistency of the interface will

often rest with the engineer, unless
marketing has defined an exact specifi-
cation. This situation is not necessarily

In safety critical

applications there

will be a tradeoff

between usability

and safety.

30 EMBEDDED SYSTEMS PROGRAMMING MAY 1996

Designing User Interfaces

a bad thing because the engineering
disciple puts a lot of value on consis-
tency. Consistency in the code is often
reflected in the interface and vice
versa, so the code can be a good place
to detect inconsistency: “I can use this
blinkLight routine everywhere except
this one place. Why? There may be
something different about what the
user sees as well.”

One of the things that can stand in
the way of a consistent, orthogonal
interface is compatibility. The com-
petitors or predecessors of a particular
piece of equipment may have set stan-
dards for the way certain operations are
performed. For some common opera-
tions you may have to follow the estab-
lished norm, even if that does not fit in
with the way other operations are per-
formed. Engineers often find this frus-
trating—their elegant design is being
soiled by what is seen as an artificial
and unfair requirement, created by his-
tory, rather than being part of the per-
fect solution to the problem at hand.

In many cases the interface of a
modern piece of equipment will have
complete software control of some-
thing that conventionally was an elec-
tro-mechanical control, such as on/off
switches and volume control knobs on
TV sets. Output devices, such as a nee-
dle to indicate fuel level in a car, could
be changed from a mechanical devices
to an electronic indicator that can be
software controlled. This change opens
up many opportunities that were not
present before, such as expressing the
remaining fuel as a percentage, or in
gallons, or in number of miles remain-
ing before the fuel runs out. In each
case we allow the user to form a men-
tal model of the fuel tank. Each of
these models is different, but once we
choose one we must be sure that we
can fill in all the information that the
model requires. To convert from gal-
lons to miles remaining, we need a
conversion factor. Using the average
miles per gallon of the car may not be
sufficient if the driver has been sitting
in a traffic jam for 45 minutes. What
seemed initially a very simple require-

ment now demands that the fuel moni-
tor also monitors consumption. Now
the user has a new rule to learn. The
number of miles read from the monitor
is only valid if the user continues the
current driving pattern. You may think
that this is a trivial rule to understand,
but it is important to realize that every
rule such as this that is created by the
designer must eventually be learned by
users if they are to make the most
effective use of the interface. The user
may learn this rule in the user manual,
if this user is one of the few people
who reads that section of the car's man-
ual. Otherwise it is learned from care-
ful observation, because the interface
does not make this information explic-
it. Such hidden rules can be dangerous.
If there are too many of them, users
will constantly find themselves being
surprised by the device’s actions, and
this will lead to mistrust.

Having moved from an analog
device to a digital display, many inter-
faces fall into the trap of giving users
far more precision than they require.
There is no value in telling users that
they have enough fuel for another 31.7
miles, since they would be foolish to
wait until the last 0.7 of a mile before
refueling. The vagueness of the needle
in this case is an advantage. The needle
says, “I do not know exactly how much
further you can go, and we are not at
the panic stage yet, but if you see a gas
station, you may as well stop.” Since
no one except clairvoyants can know
exactly how many more miles the fuel
will last, this information may be more
appropriate than “31.7” miles as an
indicator, which may lure the driver
into a false sense of security. I do not
think many drivers would appreciate a
display that said 31.7 miles ± 10%.
Remember, they are not all engineers
and may not get exposed to the concept
of tolerance every day.

If the driver is low on fuel, the sen-
sible thing to do is fill up at the next
opportunity. The needle gauges are
notoriously non-linear, but drivers
rarely complain. The designer may do
well to copy the needle approach and

32 EMBEDDED SYSTEMS PROGRAMMING MAY 1996

Designing User Interfaces

just display a bar graph made up of
LEDs, which tells the driver enough to
know when to refuel. This display is
also less threatening for the new user,
who can relate easily to past experi-
ence with the needle display. Some-
times copying the functionality of the
original mechanical device is the sim-
plest model for both the user and the
designer.

While trying to manage all possible
ways in which the user may use the
interface to control the equipment or to
request information, the handling of
illegal input is sometimes neglected.
The easiest route is to have one func-
tion that handles all invalid input with
a beep and a generic prompt if text dis-
play is possible. The novice user’s per-
ception of user friendliness can be
affected by the error handling because
the novice is the person most likely to
be making a large number of errors.
Messages that state that the user has
done something wrong may make the
novice user feel intimidated. A mes-
sage such as “Illegal key pressed” goes
so far as to suggest that the user is a
law breaker.

Making the error handling context
sensitive can be a good investment.
With a little care, prompts that guide
the user onto a sensible path can
replace “illegal key” messages. For
example, on a tuning device the “store”
key may be invalid unless some chan-
nel has been selected. The “illegal key”
prompt could be replaced with “no
channel selected.” The user is now
being supplied with a piece of informa-
tion, beyond the fact that the wrong
key was pressed.

In the medical field, it is not desir-
able that the beep, which indicates an
invalid action, be too loud. The patient
may be able to hear the machine, and
high pitched beeps increase a patient’s
anxiety, even though the cause may be
a harmless mistake, such as pressing an
invalid key. This case is extreme, but
users of other equipment may not
appreciate announcing whenever they
press the wrong key. At the least it dis-
courages experimentation with the

interface, and at worst the user will
avoid the device completely.

Sometimes the problem of what
response should be given to an invalid
input can be solved by ensuring that at
any time, any input the user can make is
valid. One example is to replace a
numeric keypad with a knob that is
rotated to change value. With the key-
pad you would have to check that the
number entered is not greater than the
maximum allowed. However, with the
knob the value is being changed in
increments and the software can clip the
value at the maximum and effectively
decouple the knob from the display
once that maximum is reached. Another
way of avoiding invalid actions on a
GUI is to remove on-screen buttons that
are not currently valid.

I hope this advice will help a little
bit in your struggles to design a better
interface. It is always more difficult for
engineers to deal with issues that are
not perfectly measurable or mathemat-
ically definable. If you spend long
enough working in this area, you will
find yourself experimenting every time
you take money from the automatic
teller machine or watching family
members try to figure out how to use
the new VCR. Of course you have
already hidden the user manual to
make it a true test of the interface.

Niall Murphy is a software engineer
working with Nellcor Puritan Bennett,
Ireland, where he designs and devel-
ops user interfaces for medical equip-
ment in C and C++. He has a degree
in computer science from Trinity
College, Dublin, and has contributed
to several magazines. Murphy can be
contacted via his e-mail address at
nmurphy@iol.ie.

REFERENCES
Leveson, Nancy, “Safeware, System

Safety and Computers,” Addison-
Wesley Publishing, Reading, MA
1995.

Thimbleby, Harold, “User Interface
Design,” ACM Press, New York, New
York, 1990.

	<BACK: <BACK

